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Abstract— The prediction of short-term volatile traffic becomes
increasingly critical for efficient traffic engineering in intelligent
transportation systems. Accurate forecast results can assist in
traffic management and pedestrian route selection, which will
help alleviate the huge congestion problem in the system. This
paper presents a novel hybrid DTMGP model to accurately
forecast the volume of passenger flows multi-step ahead with the
comprehensive consideration of factors from temporal, origin-
destination spatial, and frequency and self-similarity perspec-
tives. We first apply discrete wavelet transform to decompose the
traffic volume series into an appropriation component and several
detailed components. Then we propose a more efficient tracking
model to forecast the appropriation component and a novel
Gaussian process model to forecast the detailed components. The
forecasting performance is evaluated with real-time passenger
flow data in Chongqing, China. Simulation results demonstrate
that our hybrid model can achieve on average 20%–50%
accuracy improvement, especially during rush hours.

Index Terms— Passenger flow prediction, wavelet decomposi-
tion, Gaussian process (GP).

I. INTRODUCTION

THE accelerated urbanization process and urban popula-
tion explosion bring great pressure to the urban traffic

management. In order to withstand the high traffic pressure
especially during the morning rush hours or holidays, many
cities have been planning and building rail transit systems.
In addition, smart cards are promoted to speed up the traffic
flow in railway stations and facilitate traffic management.
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A well-designed transportation system is a key element in
the economic welfare of major cities [1]. For the efficient oper-
ation of urban transit system, planners must have a quantitative
understanding of traffic patterns, and be able to predict and
prevent any disruptions, either planned or unplanned [2]. More
specifically, to enable real-time traffic management of subway
operations and support functions such as regulating station
passengers, it is important to accurately forecast the volume
of station passenger flows. Passengers enter the light rail
system from the origin station and leave the system from the
destination station. Given an origin-destination (OD) station
pair in a light rail system, the key questions that need to be
answered are: (1) How to predict the number of passengers
that exit from the destination station at time t? (2) How to
improve the average prediction accuracy per day? (3) How to
improve the prediction accuracy at rush hours so as to find
the crowded moment that passenger flows reach the peak and
become much greater than the historical average?

Traffic volume forecasting is fundamental to the
performance of many components in intelligent transportation
systems. Great efforts have been devoted to improve the
forecasting accuracy and the transportation efficiency.
Designed based on purely spatial or purely temporal
information, the forecasting performance of most known
approaches [3]–[24] is often low. The traffic patterns in
the massive transportation systems are affected by various
factors. Several recent studies [25]–[31] try to improve
the traffic forecasting accuracy by decomposing the traffic
data into different frequency components to understand
the flow evolution from the frequency perspective. Hybrid
methods are also proposed to identify the daily traffic patterns
and some other flow patterns to improve the forecasting
accuracy [32]–[34].

Although the approaches based on the frequency analysis
present good performance on capturing the overall traffic trend,
most of them fail to track the local fluctuation of passenger
flows. High frequency sub-signals extracted by the frequency
domain analysis are still fitted by traditional non-linear models,
which can’t extract enough information to make accurate
prediction. In addition, very limited studies are made on the
relationship between an OD flow between a pair of stations
and the overall passenger flow leaving from the same origin.
Our preliminary studies indicate that the OD flow often has a
high volatility when the corresponding passenger flow exhibits
intense oscillations or steeply changes.
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In this work, we propose a novel hybrid model to more
accurately forecast the volume of passenger flows multi-step
ahead with the comprehensive consideration of factors from
temporal, OD spatial, frequency and historical probabilistic
distribution perspectives. Our contributions are summarized as
follows:

• To extract flow features from both the temporal and
frequency domains, we apply discrete wavelet trans-
form DWT) to decompose the traffic volume series into
a set of sub-signals.

• To deal with the chaos and uncertainty of traffic flow,
we apply the state space reconstruction to preprocess the
detailed components extracted by DWT. Our analysis of
real passenger flow data reveal that traffic time series
belong to a type of chaotic signals, which are commonly
handled with the state space reconstruction method.

• To capture temporal and spatial OD features, we propose
a more efficient tracking model to timely adapt the
predicted value of exit passenger flow according to the
entrance passenger flow.

• To better follow the dynamic patterns of flows, we pro-
pose a novel Gaussian Process (GP) model to forecast the
detailed components from the probabilistic perspectives.
We exploit the simultaneous predictions, with each based
on the state space reconstructed with a different time
delay between two adjacent components of the state
vector.

• To evaluate the performance of our proposed hybrid
model, we have performed extensive simulations based
on real passenger flow data. Simulation results demon-
strate that the proposed hybrid model could significantly
improve the prediction accuracy, especially in rush hours.

The rest of this paper is organized as follows. Section II
summarizes the related work on the recent popular techniques
for the prediction of traffic volume. The introduction of the
background and the analysis of data are given in Section III
and Section IV, respectively. Section V presents the technical
details of our hybrid prediction model. We evaluate the per-
formance of our proposed model through simulations driven
by the real-world data sets in Section VI, and conclude our
work in Section VII.

II. RELATED WORK

In this section, we review the related work on traffic volume
forecasting, and identify the differences of our work from the
existing work.

Existing traffic forecasting techniques can be mainly divided
into two categories, parametric and non-parametric [3], [4].
The common parametric techniques include the classi-
cal Autoregressive Moving Average (ARIMA) [5]–[8] and
Kalman filtering model [9], [10]. Because of the fast and easy
operation, they are widely used in transportation systems in
the early stages. Due to the stochastic and nonlinear nature
of traffic flow, researchers have also paid much attention to
nonparametric methods in the traffic flow forecasting field.
Wu et al. [14] utilize support vector regression (SVR) with
a radial basis function kernel to predict the travel time

in a transportation network. In [15] and [16], an online
version of SVR is employed to solve the same problem.
Oswald et al. [17] use the nearest neighbor approach to fore-
cast the traffic flow. Yu et al. [18] apply Gaussian mixture
model and expectation-maximization to estimate the density
functions of transition probability and predict traffic flow.
Lv et al. [19] propose the deep-learning-based traffic flow pre-
diction, which considers the spatial and temporal correlations
inherently. Methods proposed in [20]–[24] attempt to capture
the process dynamics and improve forecasting accuracy based
on GP model. These methods can generally capture the long-
term trend of the traffic flow, but fail to capture the traffic
short-term fluctuations while the overload is one major factor
that impacts the performance of transportation systems.

In recent years, a number of approaches are proposed
to better capture the traffic features by decomposing the
traffic data into different components. Hu and Wang [25] and
Agarwal et al. [26] apply discrete wavelet transform (DWT)
to make short-term wind speed prediction and detect traffic
incidents. Wei and Chen [27] develop a hybrid EMD-BPN
forecasting approach that combined empirical mode decompo-
sition (EMD) with back-propagation neural networks (BPN)
to predict short-term passenger flow in metro systems.
Wang et al. [28] propose a least squares support vector regres-
sion ensemble learning model based on the seasonal decompo-
sition for the forecast of the Chinese hydropower consumption.
Xing et al. [29] introduce the Robust Principal Component
Analysis for passenger flow decomposition. This method can
more accurately and robustly capture the underlying temporal
and spatial characteristics of passenger flow in the presence
of all kinds of fluctuations. Zhang et al. [30], [31] present a
hybrid model for multi-step ahead passenger flow forecasting
based on spectral analysis technique, ARIMA model and
generalized autoregressive conditional heteroskedastic model.
Decomposing traffic data into different components can help
more accurately track the temporal evolution of the traffic flow
at different time resolutions and improve traffic forecasting
accuracy. However, the performance of existing approaches is
often low and not stable. Most existing studies use the same
method to handle different components without considering
their difference, and simply fit the high frequency components
with traditional non-linear models that cannot follow well the
sophisticated behaviors of transportation systems.

Some recent studies attempt to apply hybrid methods that
can take advantage of different models to identify both the
common daily traffic trend and some variations in flow patterns
to improve the forecasting accuracy. Wang and Shi [32] pro-
pose a traffic speed forecasting hybrid model based on support
vector machine (SVM), DWT and phase space reconstruction.
In [33], a hybrid modeling approach which combines artificial
neural networks with a simple statistical is studied to make
prediction for traffic flow. Silva et al. [34] propose a new
approach to analyze massive transportation systems that used
data obtained from smart cards in the London transport system
to predict future passenger flow. These methods can achieve
higher overall forecasting accuracy, but they often fail to
identify the time of congestion or fail to accurately predict the
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congestion degree in rush hours. This is because these models
still cannot extract enough information from traffic flow data
for forecasting.

In this paper, we design a novel hybrid method with
the comprehensive consideration of several factors, including
temporal and frequency signal features, spatial relationship
among OD pairs, and probabilistic evolution of passenger
flows. Therefore, we can extract more valuable information
from flow data to improve the forecasting accuracy. Differ-
ent from previous studies, we deal with the approximation
component and detailed components generated by DWT in
different ways. To capture temporal and OD spatial features,
we apply a more effective tracking model to predict the
approximation component. We further propose a mixed time
delay Gaussian process (MTGPR) model to predict detailed
components with the intention of achieving the least predicted
variance. Gaussian Process models are nonparametric kernel-
based probabilistic models

III. PRELIMINARIES

Before presenting our detailed design for more accurate
forecast of passenger flows, we provide some background
knowledge on related techniques.

A. State space reconstruction

The number of customers in the transportation system often
varies over time due to the impact of factors such as climate,
weather, holidays, peak hours and events. These factors, either
expected or uncertain, could lead to complicated changes of
the customer flows. These changes are hard to be tracked by
a conventional linear system.

For the analysis of non-linear time series,
Froehling et. al [35] introduce the concept of phase space
reconstruction and the chaos theory. Based on the theory, all
the dynamical information needed for determining a system
state is included in the time series of any a system variable.
A state trajectory constructed from a single-variable time
series {yi , i = 1, 2, · · · , N} of the length N maintains the
foremost characteristics of the state trajectory in the original
space. The reconstructed phase space can be represented as

xi = (yi , yi+τ , · · · , yi+(d−1)τ ), i = 1, 2, · · · , N − (d − 1)τ

(1)

where xi is a state in the reconstructed phase space, d is the
embedding dimension, and τ is the delay between adjacent
elements of a state in the reconstructed phase space.

According to the Takens Theorem, if d ≥ 2D + 1, where
D is the dimension of the dynamic system, the reconstructed
dynamic system and the original one are topologically equiv-
alent. The system state of the next moment xi+1 can be pre-
dicted from the current state of the system. That is, acquiring
the predication value for the next instant of the time series
provides a basis for predicting chaos time series.

Determining an acceptable minimum embedding dimen-
sion d and the time delay τ between measurements for the
state space reconstruction is crucial [36], [37]. Given an
appropriate value of d , it is difficult to ensure that a chosen

Fig. 1. Schematic of passenger flow prediction with a tracking model.

value of the delay τ is optimal all the time. As reported
from past studies, if τ is too small, the system’s dynamical
characteristics will not be revealed; if it’s too big, a simple
trajectory will be made complicated, which can reduce the
number of effective data points. We will discuss in Section VI
how to make use of multiple delay values to increase the
prediction accuracy.

B. Gaussian process regression (GPR)

Gaussian process regression is an applicable and practical
probabilistic approach based on statistical learning theory
and Bayesian theory, which is widely used for state and
performance prediction in a variety of fields. A Gaussian
process model seeks to establish a mapping f of the form

y = f (x) (2)

between the predictor (output) y ∈ R of a complex dynamical
system and the input vector x ∈ Rd . It assumes that any
finite set of function values have a joint Gaussian distribution.
Let f be the known function values of the training cases, and
let f∗ be a set of function values corresponding to the test set
inputs X∗. We write out the joint distribution as:[

f
f∗

]
∼N(

[
µ

µ∗

]
,

[
K K∗

K T∗ K∗∗

]
) (3)

where µ and µ∗ are the means for the training set and test
set, K is the covariance for the training set, K∗ the covariance
for the training-test set, and K∗∗ the covariance for the test
set. Since we know the values for the training set f , we are
interested in the conditional distribution of f∗ given f , which
is expressed as:

f∗| f ∼ N(µ∗ + K T∗ K −1( f − µ), K∗∗ − K T∗ K −1K∗) (4)

C. Tracking Model

A tracking model can be established to follow the evolution
of the traffic flow of an OD pair based on the flow features
extracted from the traffic data. Silva et al. [34] developed the
general model to forecast the traffic volume of the London
transportation system, where the traffic flows are for fast train
commuting service within the Greater London area. Tracking
model was designed to predict three unknowns: (i) entering
counts (entering process), (ii) the rate at which passengers
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Fig. 2. Schematic of multi-step-ahead (MS) prediction with a GPR model.

remain inside the transportation system given these counts
(negotiation process), and (iii) the rate at which passengers
exit given the number of passengers inside the system and
the length of their stay, according to the origin (exiting
process). In Figure 1, Lit represents the number of passengers
entering the station Si at time t. Nij t represents the number
of passengers that have entered the system from the station Si

and exits (tapping-out) from the station Sj at time t .

D. Multi-Step Strategy

In many scenarios, there is a need to predict the system
condition multiple steps ahead, and the Equation (5) shows
the prediction for h steps. Recursive and Direct strategies [24],
as shown in Figure 2, are two main approaches used for the
multi-step ahead (MS) prediction. In the Recursive strategy,
a single-step prediction model is trained by minimizing the
square sum of the prediction errors to perform the first step
prediction. Then the window of historical data moves ahead
to include the newly predicted value and exclude the oldest
sample. The process will continue until the step size of the
multi-step prediction is reached. As the predicted values from
past steps are always taken into the model as input to get the
next prediction value, the prediction error is accumulated, thus
largely affecting the prediction accuracy.

yt+h = fh(yt , · · · , yt−d+1)+ ε (5)

Unlike the Recursive strategy, the window of historical data
in the Direct strategy doesn’t need to slide in every step of the
process. However, to perform h-step ahead prediction, there
is a need to train h models, each corresponding to an i -step
(i ∈ [1, h]) prediction. This will incur a high computation
overhead when h is large. Furthermore, because the prediction
tasks for different ahead steps are run independently, the direct
method may result in broken curves, especially when the
system is nonlinear and dynamic.

IV. EMPIRICAL STUDY WITH PASSENGER FLOW DATA

A dynamic system is considered to be chaotic if the distance
between two system evolution trajectories starting from very
close initial position grows exponentially apart. Before pre-
senting our model for prediction, we perform a set of experi-
ments to investigate and identify the traffic patterns, especially
the chaotic characteristics hidden in passenger flow series.
From previous studies, we find that the chaotic characteristics
often exist in the signals generated by the complex dynamic
systems, such as the transportation system. As a result of the

Fig. 3. ln C(r)/ ln (r) curve of passenger flow series.

chaotic characteristics, signals can be computational unpre-
dictable and sensitive to initial conditions. The dimension of
the saturation correlation and the largest Lyapunov exponent
are two fundamental measures of chaotic characteristics. If the
chaotic characteristics really exist in traffic flow data, we need
to carefully consider their impacts in our new model.

We analyze the smart-card readings of light rail system in
Chongqing, China. The data were collected over 150 days,
from March 2014 to July 2014. Each reading consists of
a card ID, a “tap-in” time stamp, a “tap-in” location code,
a “tap-out” time stamp and a “tap-out” location code. A loca-
tion code uniquely identifies one of 142 active stations of
the system. To preserve the customer privacy, card IDs are
anonymized and ignored in our analysis. The time resolution
of the recorded time stamps is 1 min. Each day is composed
of 1,200 mins, starting from 5:00 AM to 1:00 AM of the next
calendar day. Weekdays are assumed to be exchangeable [34].

1) Calculation of the Correlation Dimension: Grassberger P
[38] is a common method used for calculating the correlation
dimension of the time series attractor. With the increase of the
embedding dimension, the correlation dimension of random
sequences increases but does not reach the saturation, while
the correlation dimension of chaotic sequences approaches the
saturation. Therefore, the chaotic sequence and the random
sequence can be distinguished based on whether the corre-
lation dimension has saturation phenomenon. The correlation
dimension can be calculated as

D2 = lim
d→∝,r→0

[ ln Cd (r)

ln(r)
]. (6)

where C(r) is the correlation function, r is the radius of
the sphere in the reconstructed state space, d is the embed-
ding dimension of the reconstructed state space. As shown
in Figure 3, the curve ln C(r) versus ln (r) gradually becomes
parallel (i.e., the slope of ln C(r)/ ln (r) becomes constant),
with the increase of the embedded dimension d , which indi-
cates that the correlation dimension gradually gets saturated
and the passenger flow sequence has chaotic characteristics.

2) Calculating the Largest Lyapunov Exponents From Small
Data Sets: The detection of the presence of chaos in a
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Fig. 4. The largest Lyapunov exponent of passenger flow series given
different evolution step i: (a) i = 30, (b) i = 60, (c) i = 120, (d) i = 360.

dynamical system can be pursued by measuring the largest
Lyapunov exponent. Lyapunov exponent quantifies the expo-
nential divergence of initially close state-space trajectories
and estimate the amount of chaos in a system. A practical
method for calculating largest Lyapunov exponents is through
algorithm for the small data sets [39]. We calculate the largest
Lyapunov exponent as follows:

d j (0) = min
X ĵ

∥∥∥X j − X ĵ

∥∥∥ ,
∣∣∣ j − ĵ

∣∣∣ > P

d j (i) = ‖X j+i − X ĵ+i‖, i = 1, 2, · · · ,min(M − j,M − ĵ)

(7)

y(i) = 1

q�t

q∑
j=1

ln d j (i) ≈ 1

q�t

q∑
j=1

(ln d j (0)+ λ(i ·�t))

(8)

where i represents the discrete time-step, P represents
the average time interval between two trajectories in the
reconstructed phase space, X j is an arbitrary point in the
reconstructed phase space, �t is the sample period, d j (0)
is the shortest initial distance between two points in the
reconstructed phase space, d j (i) is the distance between X j+i

and X ĵ+i , q is the number of non-zero d j (i) values and y(i)
is the average of the sum of the distance d j (i). As shown in
Equation (8), the largest Lyapunov exponent λ is the slope of
the straight line function of the variable i .

The evolution step i is set to 30, 60, 120 and 360 respec-
tively. As shown in Figure 4, part of the largest Lyapunov
exponent of the passenger flow series is greater than
zero, indicating that the passenger flow series have chaotic
characteristics.

V. HYBRID MODEL FOR ACCURATE PREDICTION

OF PASSENGER FLOWS

The quick growth of light rail networks and urban popu-
lation explosion creates great pressure to the scheduling of

Fig. 5. The overall framework of the hybrid DTMGP model.

subway operations. To make effective operation plans and
alleviate the huge congestion problem in a light rail system
with the regulation of passenger flows, planners need to know
the time variations of short-term passenger flow between
stations and between areas. A key problem to solve is to
ensure the accurate prediction of the volume of the passenger
flow between a pair of OD stations, based on which we
can aggregate OD pairs to predict the total exit counts for
a particular station or the total passenger flow between urban
areas. In this section, we first introduce our problem system
framework, and then detail our design of the prediction model.

A. Problem and System Framework

We would like to predict the traffic volume between an OD
pair corresponding to passengers entering from the subway
station i and leaving from the station j . Let Lit be the number
of passengers entering station Si at time t (i.e., entering
tap-in counts), Nij t be the number of passengers entering
from Si and exiting from Sj at time t (i.e., tapping-out
count). Given two sequences of observed passenger flow data
{Lit , t = 1, 2, · · · , T } and {Nij t , t = 1, 2, · · · , T }, the pre-
diction problem is to predict the value of Nij (t+�), where
� denotes the prediction horizon. According to the duration
of �, we can divide the forecasting task into short, medium
and long term. In this paper, we only discuss the short-term
forecasting tasks, and set up the duration for each step of
prediction to 1 min. The prediction for multiple steps ahead
can be applied to predict passenger flows in the future, where
we set up the ahead of time steps to 15, 20, 25, and 30 minutes
respectively.
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Fig. 6. Discrete wavelet decomposition

For more accurate passenger flow forecasting, we propose
a hybrid model, named DTMGP. As shown in Figure 5, our
prediction approach mainly contains three stages: (i) data pre-
processing and decomposition, (ii) approximation component
forecasting, and (iii) detail component forecasting.

In our model, we first apply discrete wavelet trans-
form (DWT) to decompose raw traffic flow data into an
approximation component and multiple detailed components.
Then we apply a more efficient tracking model to forecast
the approximation component. As the system is shown to
have the chaotic and dynamics, rather than using the orig-
inal time series data, we exploit the phase space method.
Specifically, we reconstruct phase space from the detailed
components and further propose a mixed time delay Gaussian
process (MTGPR) model with a recursive strategy to forecast
the detailed components. As the last step, we generate the final
result with these forecasted components.

B. Data Preprocessing and Decomposition

A general traffic flow is mixed with smooth and continuous
component and sudden changes due to rush hours or events.
To better capture the dynamics of traffic flow, we exploit
discrete wavelet transform to translate the data into frequency
domain components, so that we can more accurately track
the temporal evolution of the traffic flow at different time
resolutions. The time resolution increases with the increase
of the frequency level. Given a proper mother wavelet ψ(t)
and the decomposition level l, the discrete wavelet transform
of a series f (t) can be expressed as [40]

W (l, k) =
∫ +∝

−∝
f (t)ϕ∗

l,k(t)dt , ϕl,k(t) = 2− j/2ϕ(2−l t − k)

(9)

where k is a time translation factor, ϕ∗
l,k(t) is the complex

conjugate of ϕl,k(t), and W (l, k) is the discrete wavelet
coefficient at the level l and time k.

Now the original time series is represented as:

f (t) = C +
L∑

l=1

Wl(t) (10)

where the first term, C , is the approximation component
that captures the low frequency variation of the time series.
The second term contains detailed components at levels

Fig. 7. Data processing procedure in the hybrid DTMGP model.

l = 1, 2, · · · , L. A higher level represents lower frequency
and captures the remaining details left from the previous
levels.

The input data of our hybrid model are two sequences
of observed passenger flow data {Lit , t = 1, 2, · · · , T } and
{Nij t , t = 1, 2, · · · , T }. We choose the Daubechies (Db)
mother wavelet function and choose three levels of detailed
decompositions. We first apply DWT to decompose the
sequence {Nij t , t = 1, 2, · · · , T } into one appropriation
component (a1) and three detailed components (d1, d2, d3),
as shown in Figure 6. The red curve represents the sequence
{Nij t , t = 1, 2, · · · , T } within one day. The approximation
component a1 tracks the slow-varying long trend of the traffic
volume. The curves d1, d2 and d3 correspond to the high
frequency data that fluctuate more dramatically in short-time
scales, with d1 representing the shortest time scale change.
Then we take each of the three detailed components as the
input to a MTGPR model for detailed component prediction.
The sequence {Lit , t = 1, 2, · · · , T } and the appropriation
component a1 will be taken as the input to the tracking
model for the appropriation component prediction. Finally,
we sum up all these predicted components to the final result.
Figure 7 illustrates the detailed data processing procedure in
our model.

C. The More Efficient Tracking Model and Approximation
Component Forecasting

We divide the traffic flow in a light rail system into three
processes: the entrance process, the negotiation process and
the exiting process. The entrance process tracks how many
passengers enter a station to start a journey at a specific time.
The negotiation process captures the number of passengers
that enter from a specific origin and have stayed inside the
system for a time duration. The exiting process captures the
number of passengers that from a specific origin and exit from
a destination station to end their journey, given the number of
passengers inside the system and the length of their stay.

The Model for the Entrance Process: Silva et al. [34]
model the expected value of Lit using θLit and the history
values Li(t−w), where θLit represents an unconditional time-
dependent mean that captures most of the variation of the data.
However, our simulation results prove that this method may
lead to large error. To better capture the dynamics of flow
volume, we instead model the expected values of Lit under
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the condition t ≥ 1 and the set of given past entries as

E(Lit |P AST, Lit > 0)

= (θLit +
W∑
w=1

βLwi (Li(t−w) − θLi(t−w)))+, (11)

where (x)+ means max(x,0), and

P(Lit > 0|P AST ) ≡ πLit (12)

In the above representation of the expected value of Lit ,
we modify θLit by adding in the accumulative fluctuations of
the history tap-in counts, with the difference at the time t −w
represented as (Li(t−w) − θLi(t−w) ). For simplicity, we define
Lit ≡ 0 for t < 1.

The Model for the Negotiation Process: For each station Si

and time t , we provide a concise presence table to represent
the number of passengers who enter the system via Si and have
not left the system by time t − 1. The presence table captures
the empirical distribution of passengers through the amount
of time they have stayed inside the system. This empirical
distribution is given in seven coarse time periods: [1, 10] min,
[11, 20] min,. . ., [50, 60] min, and more than 60 min. For each
station and time t , we have the vector Mit ≡ (M1

it , . . . ,M7
it )

represent the counts at these seven levels.
We model the temporal evolution of the entries of Mit

through a cascade of nonparametric binomial regression mod-
els. We find that, for a given time t , the variation on
Mk

it (1≤k≤7) depends on Mk
i,t−1 + H k

it − H k+1
it , where H k

it
represents the number of passengers who enter the system via
the station Si at time t − 1 − (k − 1) ∗ 10 and have not left the
system by time t −1. For example, for a time t of interest, M3

it
represents the number of passengers who have stayed inside
the system in the time bracket [21, 30]. It is not difficult to
understand that these passengers are part of the ones who have
been in the system in the time bracket [20, 29] at t −1, which
is represented by M3

i,t−1 + H 3
it − H 4

it .
So Mk

it in a given day can be modeled as

Mk
it |P AST ∼Binomial(Mk

i,t−1 + H k
it − H k+1

it , pk
it ),

H k
it = Li,t−1−(k−1)∗10 ∗ qk

it (13)

where we define M0
i,t−1≡Li,t−1. The parameter pk

it represents
the probability of entering the system via the station Si during
the period [t − 1 − (k − 1) ∗ 10, t − k ∗ 10] and staying in the
system at time t . It is different for each station Si and the
time t of the day. The parameter qk

it represents the probability
of entering the system via the station Si at t − 1 − (k − 1)∗10
and staying in the system for more than (k − 1) ∗ 10 minutes,
and it is fitted by the cubic spline smoothing.

The Model for the Exiting Process: According to history
observations, we can calculate the median of the traveling time
from the station Si to the station Sj . The value of Nij t will be
impacted by the passenger numbers in the previous, current
and next time brackets. For instance, given that the median
of the traveling time from Si to Sj is 35 minutes, the corre-
sponding brackets are [21, 30], [31, 40], [41, 50]. The model

Fig. 8. The value of qk=2
i j t , qk=3

i j t , qk=4
i j t at different time t.

for Nij t is then

Nij t |P AST = Mk=2
it ×qk=2

i j t + Mk=3
it ×qk=3

i j t + Mk=4
it ×qk=4

i j t

(14)

where qk=2
i j t is the ratio of passengers from Mk=2

it that leave
from the station j at time t and contribute to Nij t . In the Equa-
tion (14), we assign a different qi j t to each Mk

it . To identify the
traffic patterns, we conduct many experiments. Parameters qk

i j t
for a station pair i − j are fitted using cubic spline smoothing.
However, our experiment results demonstrate that the value
of qk

i j t varies largely for the same values of i, j, t . Figure 8
provides a visualization of qk

i j t values, with k = 2, 3, 4. It is
obvious that qk=3

i j t is often far greater than the other two values
at a specific time t.

D. The MTGPR Model and the Forecast of Detailed
DWT Components

As identified in Section IV, traffic flow data have strong
chaotic characteristics. When handling this type of signals,
traditional forecasting methods are often hard to meet the
accuracy requirements. In addition, we usually need to recon-
struct the state space first when making the prediction for the
time series generated by a complex dynamic system. However,
the passenger flow pattern in the complex dynamic system
won’t stay unchanged, and we cannot ensure that time delay
selected for reconstructing a state space is optimal at any time.

Considering these factors, we propose an MTGPR model
for more accurate traffic flow prediction. The schematic of
multi-step-ahead (MS) prediction with an MTGPR model is
shown in Figure 9, where the area between blue and green
lines represent the forecasted values based on the Gaussian
Process (GP) model. The larger the distance between the two
lines, the greater the predicted variance. Given the embedding
dimension d , we first select the total number of different time
delays we will use in the prediction, M . We then reconstruct
d-dimensional state space M times with different delay values,
varying from 1 to M . For each space reconstructed, we make
the prediction based on the GP model. Therefore, for the
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Fig. 9. Schematic of multi-step-ahead(MS) prediction with a mtgpr model.

prediction of yt+1, we can obtain M pairs of predicted
meanτ and predicted varianceτ . We put them in the set
{(meanτ , varianceτ )|τ ∈ [1,M]}. We then select the pair
with the least predicted variance as the final predicted result.
For the prediction based on a phase space with a specific time
delay, a red circle marks the smallest predicted variance. For
a multi-step-ahead system, the uncertainty will increase as the
number of steps looking ahead becomes larger. As one output
of the classical GP model, the predicted variance reflects the
uncertainty around the prediction mean. In order to mini-
mize the uncertainty and improve the forecasting accuracy,
we would like our prediction model to achieve the smallest
predicted variance in each step.

Given a detailed component {yi , i = 1, 2, · · · , t} extracted
by DWT, we can obtain M input sets {(xi,τ , yi ), i =
1, 2, · · · , t} by reconstructing state spaces with different time
delays τ (from 1 to M). Defining yi ≡ 0 for i < 1, xi,τ =
(yi−1, yi−τ−1, · · · , yi−(d−1)τ−1), Xτ = [x1,τ , x2,τ , · · · , xt,τ ]T ,
Y = [y1, y2, · · · , yt ]T , the MTGPR model for yt+1 is then:

yt+1 = E(yt+1|X τ̂ ,Y, xt+1,τ̂ ),

τ̂ = arg min
τ∈[1,M] var(yt+1|Xτ ,Y, xt+1,τ ),

Y∼N(0, K (Xτ , Xτ )+ σ 2
noise I ). (15)

where E() and var() represent the predicted mean and
variance of forecasted values respectively based on the GP
model. K (Xτ , Xτ ) is the covariance matrix, whose element
Kij = k(xi,τ , x j,τ ) is the covariance function, usually given
by a squared exponential form.

To reduce the overall processing time, we can use multi-
thread or parallel computing to realize MTGPR. Suppose
there is a h-step-ahead forecasting task, the algorithm can be
executed iteratively h times with the recursive strategy. Though
there exist dependency among different steps of looking ahead,
parallel computing is just executed within each step. Given the
historical observations {yi , i = 1, 2, · · · , t}, the time delay set
{1, 2, · · · ,M} and the embedding dimension d , there are four
phases in each iteration:

1) Initialization: We initialize M + 1 processors/threads,
with M processors responsible for making the predic-
tion in parallel and the remaining one responsible for
summarizing the results.

2) Forecasting: Each of the M processors makes one-step-
ahead prediction based on the Gaussian process model

Fig. 10. Cumulative distribution function of exit counts aggregated per day.

and outputs a pair of predicted mean and predicted
variance.

3) Summarization: The remaining one processor summa-
rizes all the M results. The pair with the smallest
predicted variance will be selected as the final result.

4) Updating: We update the input vector with the new
predicted mean yi , where i ∈ {t + 1, t + 2, · · · , t + h}.
Then the program will continue to the next iteration.

VI. EXPERIMENTS

We randomly select time series data from 100 pairs of
OD stations to evaluate the performance of our prediction
algorithm. As shown in Figure 10, the traffic patterns on
weekdays and weekends are completely different. In order
to reduce the impact of data difference on the experimental
results, we divide the historical observations into two parts,
one part from the weekdays and the other from weekends.
The training process is independent in each part. We use data
of the first 4 months as the training set and the later 1 month
as the testing set.

To evaluate the performance of our hybrid model, we have
performed two groups of extensive simulations. In the first
group, we first evaluate the accuracy of our MTGPR model on
making prediction for detailed components, and in the second
group we evaluate the final forecasting performance of our
hybrid model based on the original time series. We calculate
the forecasting accuracy for each OD station pair and take the
average to obtain the final forecasting accuracy.

A. Evaluation Metrics and Reference Models

We use four metrics to evaluate the forecasting performance
of our model:

• DAY-MAE, the mean absolute error during the whole day.
• MR-MAE, the mean absolute error during morning rush

hours.
• MPT-MAE, the mean absolute error of peak traffic fore-

casting during morning rush hours.
• DAYPT-MAE, the mean absolute error of peak traffic

forecasting during the whole day.
MPT-MAE and DAYPT-MAE reflect the performance of our

model on forecasting the congestion degree in a transportation
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Fig. 11. (a) d1 component forecasting, (b) d2 component forecasting, (c) d3 component forecasting.

Fig. 12. Results predicted by different models: (a) DAY-MAE results comparison on weekdays, (b) DAYPT-MAE results comparison on weekdays, (c)
MR-MAE result comparison on weekdays, (d) MPT-MAE results comparison on weekends, (e) DAY-MAE results comparison on weekends, (f) DAYPT-MAE
results comparison on weekends, (g) MR-MAE result comparison on weekends, (h) MPT-MAE results comparison on weekends.

system. These metrics are defined as follows:

M AE =
∑tend

t=tstart
| ˆNij t − Nij t |

tend − tstart + 1
(16)

where Nij t represents the number of passengers that have
entered the system from the station Si and exits (tapping-out)
from the station Sj at time t . ˆNij t represents the forecasted
value. For the metric DAY-MAE, tstart = 1 and tend = 1200
(from 5:01 AM to 1:00 AM on the next calendar day). For
the metric MR-MAE, tstart = 141 and tend = 240 (from
7:21 AM to 9:00 AM). For the metric MPT-MAE, t include
the moments at which the observed number of passengers soar
to top30 during morning rush hours. For the metric DAYPT-
MAE, t include the moments at which the observed number
of passengers soar to top200 during the whole day.

We implement four reference forecasting models for the
performance comparison.

1) AR [41]: AutoRegressive (AR) models are most widely
studied because of their flexibility in modeling many stationary
processes. In this study, we set the time lag I = 2, order
p = 30.

2) SVR [42]: This approach reduces the over-fitting and
computational costs inherent in traditional SVR, with the basic
assumption that the most recent data samples provide more
relevant information for forecasting.

3) BPNN: It is the most representative learning model
for the ANN. BPNN in this study used 30 input neurons,
25 hidden nodes (three-layer) and 1 output neuron.

4) Tracking [34]: This model was designed to keep track
of the number of passengers inside the transportation system.

B. Performance Results

1) Performance Comparison of Detailed Components
Forecasting: In Figure 11(a-c), our MTGPR model is shown
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to be able to control the MAE on the d1 component, d2 com-
ponent, and d3 component at a very low level, while MAE
under conventional Gaussian process model with direct strat-
egy or recursive strategy are much higher. Even when raising
the forecasting steps to 35, MAE values of our MTGPR model
have very small increase, while the MAE of the other two
models constantly increase with the prediction steps. This
demonstrates the effectiveness of our model in minimizing
the prediction error by constructing the phase space using the
time delay with the minimum predicted variance in each step.

2) Performance Comparison of the Original Signals Fore-
casting: We carry out four series of simulations: 15-step
ahead forecasting, 20-step ahead forecasting, 25-step ahead
forecasting and 30-step ahead forecasting to evaluate the per-
formance of our hybrid model. Figure 12 shows the forecasting
performance of different models on weekdays and weekends.
As shown in Figure 12, the forecasting using our hybrid model
achieves the lowest error under all prediction steps studied.

With the number of prediction steps increased, the forecast-
ing accuracy of the AR, SVR, BPNN and Tracking models
deteriorate dramatically, while the forecasting accuracy of our
hybrid model has very small increase. This indicates that
our model does not have cumulative error and can better
predict the traffic in advance, which will allow more time
for efficient traffic scheduling. In addition, under the same
steps, our hybrid model achieves on average 10% − 30%
higher accuracy compared to other four models. It is worth
noticing that, the DAYPT-MAE and MPT-MAE values by
using the hybrid DTMGP model are only about 20% − 45%
those of using other four models. This fact indicates that our
model can better predict the overload degree in a transportation
system, which will help alleviate the congestion. With the
comprehensive consideration of spatial relationship among OD
pairs, the temporal and frequency features of traffic, and the
correlation among signals in the reconstructed phase space,
our model can sense the small changes of external factors and
timely adjust the predicted result.

Figure 12 (e-h) present the prediction accuracy by taking
different methods on weekends. It can be easy to find that the
forecasting accuracies of different methods are overall higher
than those in Figure 12 (a-d). The reason for this phenomenon
is that the passenger flow data on weekends are more stable
compared with those on weekdays.

VII. CONCLUSION

In this paper, we propose a novel hybrid model to more
accurately forecast the volume of passenger flows multi-step
ahead. To the best of our knowledge, this is the first hybrid
model to follow the evolution of traffic flow simultaneously
from the temporal, frequency, OD spatial and historical prob-
abilistic distribution perspectives. As one important part of
the hybrid model, the MTGPR model proposed in this article
can also effectively capture the process dynamics and make
prediction with a smaller predictive variance compared with
state of the art Gaussian process models. The simulation
results demonstrate that our hybrid model can achieve on
average 20%−50% higher accuracy compared to other models.

In the future work, we also plan to explore methods to further
improve forecasting accuracy by fully employing the graph
structure of the road networks or light rail network.
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